+38 (044) 593-88-26 +38 (067) 548-20-65
+38 (044) 593-88-27 +38 (067) 473-40-83
Обратный звонок
Продукция Акустические системы Проектирование Инструкции монтажа Многое о звукоизоляции Документация

Рекомендации по проектированию виброизолирующих конструкций


Проектирование виброизолирующих конструкций сводится к выбору конструктивной схемы виброизоляции, подбору типа и параметров виброизоляторов по известной номенклатуре (реже их рассчитывают и проектируют), выбору конструкции пола на упругом основании (если он требуется), расчету эффективности принятой конструкции (виброизоляции).

Все рассмотренные виброизолирующие конструкции снижают передаваемую на фундамент вибрацию только на частотах, превышающих основную частоту собственных вертикальных колебаний 12(резонансную частоту) системы, состоящей их машины, установленной на виброизолирующем основании. При выборе виброизолирующих конструкций исходят из требования

144

где 1454 — рабочая частота машины (оборудования), Гц, — это частота оборотов в секунду для машин с вращающимися частями (насосы, вентиляторы), число ходов в секунду машин с возвратно-поступательно движущимися частями (поршневые компрессоры).

Если жесткость неопорных связей (трубопроводов, гибких вставок и т.д.) не более половины жесткости виброизоляторов, то могут быть выбраны виброизоляторы и спроектирована виброизолирующая конструкция. В противном случае необходимо учитывать жесткость неопорных связей – выбор виброизоляторов и самой виброизолирующей конструкции становится более сложным.

При виброизоляции машин с рабочими частотами менее 18…20 Гц следует применять пружинные виброизоляторы. При больших рабочих частотах можно использовать как пружинные виброизоляторы, так и упругие прокладки из эластомерного материала. Пружинные виброизоляторы, обладая меньшей частотой , обеспечивают большую виброизоляцию на низких частотах, чем другие виды виброизоляторов из эластичных материалов. Однако последние на средних и высоких частотах более эффективны, поскольку волновые резонансные явления, ухудшающие виброизоляцию, в них наступают на более высоких частотах, чем в пружинах и, кроме того, менее выражены из-за существенно больших внутренних потерь энергии.

Плавающие полы без специальных виброизоляторов можно использовать только с оборудованием, имеющим рабочие частоты более 45…50 Гц. Это, как правило, небольшие машины, виброизоляция которых может быть обеспечена и другими способами. Эффективность полов на упругом основании на столь низких частотах невелика. Поэтому применяют их только в сочетании с другими видами виброизоляторов, что обеспечивает высокую виброизоляцию на низких частотах (за счет виброизоляторов), а также на средних и высоких (за счет виброизоляторов и плавающего пола). Стяжка плавающего пола должна быть тщательно изолирована от стен и несущей плиты перекрытия, так как образование даже небольших жестких мостиков между ними может существенно ухудшить его виброизолирующие свойства. Поэтому при конструировании плавающего пола предусматривают мероприятия, предупреждающие просачивание бетона в упругий слой при изготовлении пола. В местах примыкания плавающего пола к стенам необходим шов из нетвердеющих материалов, не пропускающий воду.

При линейных размерах стяжки плавающего пола более 8…10 м с целью предотвращения растрескивания бетона рекомендуется выполнять разделительные швы, которые не должны проходить вблизи места установки инженерных агрегатов. Большие агрегаты следует располагать в центре отдельных плит, на которые швами разбивается вся стяжка плавающего пола. Конструкция плавающего пола должна обеспечивать ее несущую способность на действие статической нагрузки от оборудования. Пример конструкции звукоизоляционного плавающего пола показан на рис. 4.

articles_2

Рис. 4 Принципиальная схема устройства звукоизоляционного плавающего пола

  • 1 – стена здания;
  • 2 – невысыхающий герметик;
  • 3 – вспененный полиэтилен Texsilen Plus толщиной 20 мм;
  • 4 – гидроизолирующий слой полиэтилена;
  • 5 – бетонная стяжка толщиной 80 мм, армированная металлическими конструкциями;
  • 6 – плита перекрытия;
  • 7 – технологический деформационный шов (выполняется в случае необходимости).

За счет установки инженерной машины на железобетонную плиту достигается снижение уровня колебаний самой машины и увеличивается ее устойчивость на пружинах. На низких частотах даже при неизменном значении возможно небольшое увеличение виброизоляции за счет разделения разных пространственных форм колебаний машины, установленной на виброизоляторах, которое не учитывается в одномерной расчетной схеме. Однако в звуковом диапазоне частот в целом виброизоляция заметно увеличивается за счет возрастания импеданса виброизолированной установки.

При использовании фундаментных железобетонных плит в отдельных полосах частот может быть и снижение виброизоляции. Это происходит в случаях, когда из-за увеличения массы виброизолированной установки и применения больших пружин октавная полоса, в которую попадает первая волновая резонансная частота пружин, и с которой начинается «провал» виброизоляции пружинами, сдвигается на октаву вниз. Поэтому лучше устанавливать инженерный агрегат на пружинные виброизоляторы меньших номеров (при их большем количестве), чем больших (их потребуется меньше), поскольку у последних раньше начинается спад виброизоляции.

В звуковом диапазоне частот железобетонные плиты лучше работают, если (при заданной массе) они имеют минимальные размеры в плане, но большую толщину. Для повышения акустической виброизоляции не следует делать больших в плане железобетонных плит, на которых устанавливают сразу несколько машин — например, основной и резервный насосы. Железобетонную плиту устанавливают также в тех случаях, когда жесткость подходящих к машине трубопроводов с гибкими вставками соизмерима или превышает общую жесткость виброизоляторов, которые потребовались бы для установки машины без этой плиты. Такое положение может иметь место, например, при виброизоляции насосов. За счет установки железобетонной плиты увеличивается общая масса виброизолированной установки и снижается частота ее собственных колебаний, так как уменьшается влияние жесткости присоединенных трубопроводов. В результате, дополнительно к сказанному выше, достигается увеличение виброизоляции и на низких частотах. В ряде случаев жесткость присоединенных к машине трубопроводов с гибкими вставками оказывается настолько большой, что она вообще не может быть виброизолирована без установки железобетонной плиты.

При устройстве массивных виброизолированных оснований необходимо учитывать наличие внутренних виброизолирующих элементов у вентиляционного и компрессорного оборудования. В этих случаях внутренние виброизолирующие элементы рекомендуется шунтировать с помощью резьбовых или винтовых соединений.

Вверх